碳微米管表示不服,穆尔定律放缓

原标题:摩尔定律放缓 石墨烯3D芯片能延续美半导体荣光

1月20日,顶级科学杂志《Nature》刊登了北京大学教授彭练矛和物理电子学研究所副所长张志勇课题组在碳纳米管电子学领域取得的世界级突破:首次制备出5纳米栅长高性能碳纳米管晶体管,并证明其性能超越同等尺寸硅基CMOS场效应晶体管,将晶体管性能推至理论极致。

2016年对半导体行业来说是风起云涌。为了度过难关,各大企业不是一头扎进了疯狂的并购潮,就是加大力度进行技术研发。今天就让我们来看一看2016年半导体材料都发生了哪些突破。

自从特朗普把”美国优先”树立为美国政府制定政策的标准以来,美国的各个产业部门都应景地涌现出”使美国再次伟大”的方案和计划来,其中自然少不了电子行业。美国国防高级研究计划局(DARPA)作为美国军用技术研究主要管理部门适时地启动了电子复兴计划。

2月27日,央视新闻频道播出了专题节目《神奇的石墨烯》,(石墨烯上CCTV啦!新闻频道专题节目《石墨烯到底有多神奇?》(附视频)),节目中提到,石墨烯有望替代硅,成为下一代芯片的主要材料。利用石墨烯制造新一代器件,也有望让我国的芯片制造业实现弯道超车,达到国际先进水平。

一、硅基导模量子集成光学芯片研制成功

该计划旨在团结美国的产业界和学术界,以重振美国略显颓势的芯片产业。因其宣称将改变微电子行业的生产方式,所以有的媒体也鼓吹美国的电子复兴计划将引发第二次电子革命。

众所周知,全球的集成电路产业一直在摩尔定律的“照耀”下沿着硅基的路线前行,但当主流的CMOS技术发展到10纳米技术节点之后,后续发展越来越受到来自物理规律和制造成本的限制,摩尔定律有可能面临终结。20多年来,科学界和产业界一直在探索各种新材料和新原理的晶体管技术,期望替代硅基CMOS技术,但到目前为止,并没有机构能够实现10纳米的新型器件,并且也没有新型器件能够在性能上真正超过最好的硅基CMOS器件。

图片 1

图片 2

碳基超越硅基?

7月份,中国科技大学郭光灿院士领导的中科院量子信息重点实验室任希锋研究组与浙江大学戴道锌教授合作,首次研制成功硅基导膜量子集成芯片,他们在硅光子集成芯片上利用硅纳米光波导中不同的能量传输模式,作为量子信息编码的新维度,实现了单光子态和量子纠缠态在偏振、路径、波导模式等不同自由度之间的相干转换,其干涉可见度均超过90%,为集成量子光学芯片上光子多个自由度的操纵和转换提供了重要实验依据。

美国的这一计划分为三个部分:

2005年,国际半导体技术线路图(ITRS)委员会首次明确指出在2020年前后硅基CMOS技术将达到其性能极限。后摩尔时代的集成电路技术的研究变得日趋急迫,很多人认为微电子工业在走到7纳米技术节点之后可能不得不面临放弃继续使用硅材料作为晶体管导电沟道。在为数不多的可能替代材料中,碳基纳米材料被公认为最有可能替代硅材料。

二、首个打破物理极限的1nm晶体管诞生

一类关乎设计,包括:电子智能资源(IDEA)和先进开源硬件(POSH),主要涉及到降低设计成本的问题。

2008年ITRS新兴研究材料和新兴研究器件工作组在考察了所有可能的硅基CMOS替代技术之后,明确向半导体行业推荐重点研究碳基电子学,作为未来5~10年显现商业价值的下一代电子技术。美国国家科学基金委员会(NSF)十余年来除了在美国国家纳米技术计划中继续对碳纳米材料和相关器件给予重点支持外,在2008年还专门启动了“超过摩尔定律的科学与工程项目”,其中碳基电子学研究被列为重中之重。其后美国不断加大对碳基电子学研究的投入,美国国家纳米计划从2010年开始将“2020年后的纳米电子学”设置为3个重中之重的成名计划(signatureinitiatives)之一。除美国外,欧盟和其他各国政府也高度重视碳纳米材料和相关电子学的研究和开发应用,布局和继续抢占信息技术核心领域的制高点。

图片 3

一类关乎计算机体系结构,包括:软件定义硬件(SDH)和区域片上系统(DSSoC),主要关注硬件与软件之间独立性和兼容性的问题。

碳纳米管材料中,最有可能替代硅的有两个,碳纳米管和石墨烯。在石墨烯获得诺贝尔奖之前,碳纳米管一直被认为是最有可能代替硅的半导体材料,而如今,由于石墨烯在全球范围内的狂热,似乎有代替碳纳米管之势,那么,石墨烯和碳纳米管,究竟谁能堪当大任呢?

10月7日对于普通人来说可能没有什么意义,但对于计算机技术界来说绝对是一个值得纪念的日子。据外媒报道,劳伦斯伯克利国家实验室的一个团队打破了物理极限,将现有最精尖的晶体管制程从14nm缩减到了1nm。

最后一类关注整合材料的问题,即制造芯片材料的整合问题,包括3D片上系统(3dSoC)和新计算基础需求分析(FRANC)。

碳纳米管集成电路的研发优势与发展现状

三、碳纳米晶体管性能首次超越硅晶体管

第一批入围该项目资助的有来自于全美国的43个团队,其中来自麻省理工学院Max
Shulaker团队独得6100万美元位列第一,而这一数字也远高于同为研究3DSoC的佐治亚理工学院团队的310万美元。目前该团队主要的研究内容是将石墨烯材料用于制作碳纳米晶体管,并构造出3D芯片来。据称该团队的研究内容将有望以更低的成本实现50倍计算性能的提升。

1991年,日本NEC公司的饭岛澄男在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由碳分子组成的管状同轴纳米管,也就是现在被称作的碳纳米管CNT,又名巴基管。

图片 4

图片 5

碳管材料具有极为优秀的电学特性。室温下碳管的n型和p型载流子(电子和空穴)迁移率对称,均可以达到10000cm2/(V?s)以上,远超传统半导体材料。另外碳管的直径仅有1~3nm,更容易被栅极电压非常有效开启和关断。

美国研究人员于9月6日宣布,他们成功制备出一种碳纳米晶体管,其性能首次超越现有硅晶体管,有望为碳纳米晶体管将来取代硅晶体管铺平道路。硅是目前主流半导体材料,广泛应用于各种电子元件。但受限于硅的自身性质,传统半导体技术被认为已经趋近极限。碳纳米管具有硅的半导体性质,科学界希望利用它来制造速度更快、能耗更低的下一代电子元件,使智能手机和笔记本电脑等设备的电池寿命更长、无线通信速率和计算速度更快。但长期以来,碳纳米管用作晶体管面临一系列挑战,其性能一直落后于硅晶体管和砷化镓晶体管。美国威斯康星大学麦迪逊分校的研究人员在美国《科学进展》杂志上介绍了他们克服的多重困难。

(该团队在3DSoC分项中获得了绝大多数赞助)

碳纳米管相对于硅材料的优点:

四、“石墨烯之父”发现比石墨烯更好的半导体——硒化铟(InSe)

大投资、新材料加上号称数量级的性能提升为这支石墨烯3D芯片团队赚足了眼球。国内也有不少公众号转发了这一消息,有的更将其称之为”美国电子复兴计划中的绝对核心”,并称该类芯片将在人工智能领域大显身手。那么我们不禁要问,石墨烯3D芯片是什么?真的有这样的威力吗?

1)载流子输运是一维的。这意味着减少了对载流子散射的相空间,开辟了弹道输运的可能性。相应地,功耗低。

图片 6

此次的石墨烯3D芯片并非完全由石墨烯构成

2)所有碳原子的化学键都是链接的,由此,没有必要进行化学钝化工艺以消除类似存在于硅表面的悬挂键。这意味着碳纳米管电子不一定非得使用二氧化硅绝缘体,高介电常数和晶体绝缘体都可以直接使用。

石墨烯只有一层原子那么厚,具有无可比拟的导电性。全世界的专家们都在畅想石墨烯在未来电路中的应用。尽管有那么多的超凡属性,石墨烯却没有能隙(energy
gap)。不同于普通的半导体,它的化学表现更像是金属。这使得它在类似于晶体管的应用上前景黯淡。这项新发现证明,硒化铟晶体可以做得只有几层原子那么薄。它已表现出大幅优于硅的电子属性。而硅是今天的电子元器件(尤其是芯片)所普遍使用的材料。更重要的是,跟石墨烯不同,硒化铟的能隙相当大。这使得它做成的晶体管可以很容易地开启/关闭。这一点和硅很像,使硒化铟成为硅的理想替代材料。人们可以用它来制作下一代超高速的电子设备。

负责此次3D芯片项目的是麻省理工学院的明星教授Max
Shulaker,Max教授早在斯坦福大学就读博士时就有惊人的理论成果。他所在的团队开发出了世界上第一台基于碳纳米晶体管技术的计算机,并将成果公布在著名的《自然》杂志上。

3)强共价键结构能使碳纳米管具有较高的机械稳定性和热稳定性,且对电迁移有很好的抵抗力,可以承受的电流密度高达10A/cm。

五、人类首次飞秒拍摄到了半导体材料内部的电子运动

图片 7

4)它们的关键尺寸,即直径,是由化学反应控制,而不是传统的制造工艺。

图片 8

(Max Shulaker教授像)

5)原则上,无论是有源器件(晶体管)还是互连联结线,都可以分别由半导体属性和金属属性的碳纳米管制成。

电子是一种亚原子粒子,属于轻子的一种。长期以来,由于它的质量小(9.1×10-31千克),速度快(绕原子核一周只需要1.8×10-16秒),虽然用处广泛,却难以观测。2008年2月,来自瑞典的几位科学家首次拍摄到了单个电子的录像,实现了历史性的突破。然而,想要拍摄固体内部的电子,因为电子数量众多、环境复杂,更是难上加难。长期以来,科学家们没有找到任何直接观测的方法。如今,来自冲绳科学技术大学院大学(Okinawa
Institute of Science and Technology Graduate
University,OIST)的科学家们用他们的“飞秒照相机”成功地首次拍到了材料内部电子的运动轨迹,再度实现了突破。

2017年Max教授再次于《自然》杂志发文提出单芯片上三维集成的计算和存储模型,也是在这篇文章中产生了石墨烯制造的碳纳米管3D芯片这一概念。

图片 9

六、美国犹他大学工程师最新发现新型二维半导体材料一氧化锡(SnO)

由于Max教授2013年的辉煌过往,几乎国内所有的报道都把此处的3DSoC当作是完全的石墨烯芯片,而且把Max
2017年发表的论文视为其2013年的那篇论文的发展和延续,而忽略了二者存在的明显区别。

斯坦福大学研究组采用如(a)所示的碳纳米管阵列制备出了如(b)所示的世界上第一个碳纳米管计算机;(c)主要功能单元的扫描电子显微镜像

图片 10

2013年的那个碳纳米晶体计算机是完全意义上的纯碳纳米技术计算机,其主要内容是探索用新材料取代硅做新型电子设备的材料,而最近发表于自然杂志的石墨烯3D芯片则是试图用石墨烯材料参与到传统硅芯片的构建中来,两者的思路是不尽相同的。

碳纳米管半导体器件的研究进展:

一氧化锡这个“小鲜肉”由犹他大学材料科学和工程学副教授艾舒托什·蒂瓦里领导的研究团队发现,它由锡和氧元素组成。目前,电子设备内的晶体管和其他元件由硅等三维材料制成,一个玻璃基层上包含有多层三维材料。但三维材料的缺陷在于,电子会在层内的各个方向四处弹跳。蒂瓦里解释道,而二维材料的优势在于,其由厚度仅为一两个原子的一个夹层组成,电子只能在夹层中移动,所以移动速度更快。

图片 11

图片 12

七、德国开发出新型有机无机杂化“人工树叶”

(论文配图可以明显看出不是纯石墨烯芯片)

近年来,基于碳纳米管的碳基电子学研究取得了飞速发展,并逐渐从基础研究转向实际应用。得益于材料自身的优良性质和世界范围的政策和资金支持,研发人员在碳纳米管的器件物理、器件制备、集成方法等方面都取得了相当的成就,达到了其他纳米材料从未达到过的高度。

图片 13

该教授2017年发表在《自然》杂志论文中报告的芯片,拥着四个集成电路层,并拥有5个子系统。其中负责实验样品蒸汽数据采集、传输和处理的部分是碳纳米晶体管构建的,而电阻随机存储单元(RRAM)和接口电路是由硅晶体管构建的。毫无疑问,这是一个组合型的气味探测芯片,而不仅仅是碳纳米晶体管构成的。

研究进展表明碳基电子学器件相比传统硅基器件具有5~10倍的速度和能耗优势,可以实现5nm以下的半导体技术节点,满足2020年之后新型半导体芯片的发展需求。研发人员已经实现了具有各种功能的基础逻辑单元,原则上就可以利用这些逻辑单元制备出具有极高复杂程度的碳基集成电路。

德国亥姆霍兹柏林材料与能源中心michaellublow教授课题组日前首次设计合成了一种新型有机无机杂化的硅基光阳极(人工树叶)用于光解水产氧。得益于该保护层高稳定性、高导电性,光催化解水效率大幅提高,该项研究创新性地引入有机保护层,首次构造出了有机无机杂化的稳定光阳极结构,克服传统光阳极光解水的不稳定性问题,为光催化光阳极设计提供了新思路;同时,该保护层的制备方法具备良好的可扩展性,可沿用到其他半导体材料。

石墨烯芯片还存在很多问题

《自然》杂志于2013年发表了美国斯坦福大学的研究人员采用178个碳纳米管晶体管制造出的的计算机原型。《MIT技术评论》于2014年报道了美国IBM公司表示将在2020年之前利用碳纳米管制备出比现有芯片快5倍的半导体芯片。美国IBM公司于相关媒体发表的结果表明,基于碳纳米管的半导体芯片在性能和能耗方面都比传统硅基芯片有显著改善:硅基半导体技术从7nm缩减到5nm节点,相应的芯片性能大约有20%的增加,而7纳米技术节点下的碳基半导体技术比硅基7nm的性能提高300%,相当15代硅基技术的改善。这些进展使半导体产业界看到了碳基电子学时代的曙光,有望将性能持续提高的摩尔定律延续到2050年。

八、新型无机半导体材料SnIP具有DNA的双螺旋结构

之所以人们会想用石墨烯以取代现有的硅半导体作为芯片的材料,用Max教授的2013年的话说就是:”与传统晶体管相比,碳纳米管体积更小,传导性也更强,并且能够支持快速开关,因此其性能和能耗表现也远远好于传统硅材料”。

但是,碳纳米管也有限制,人工制造的碳纳米管是金属特性和半导体特性的混合体.这2种属性的碳纳米管相互“粘连”成绳索状或束状,使得碳纳米管的用途大打折扣,因为只有半导体特性的纳米管才有晶体管性能。现有的制备方法生产出的碳纳米管均为各种手性和不同管径的混合,手性和管径的不同,直接导致导电性质的不同,这使得碳纳米管在大部分实际应用存在许多困难。

图片 14

换言之就是说,石墨烯具有硅所不具备的更优良的力学、化学和电学性能。不过这些优势真的是电子工业所需要的吗?近几年来,作为计算机核心的CPU的单核性能不再像过去一样大幅提高的主要原因真的是因为硅半导体材料的力学、化学和电学性能不行吗?

彭练矛教授在接受采访时透露,目前IBM在碳纳米管研究方向上采用的是掺杂制备方法,而彭练矛与张志勇课题组采用的是无掺杂制备方法,这是全球首创的,他们课题组经过10多年的研究,开发出无掺杂制备方法,研制的10纳米碳纳米管顶栅CMOS场效应晶体管,其p型和n型器件在更低工作电压(0.4V)下,性能均超过了目前最好的、在更高工作电压(0.7V)下工作的硅基CMOS晶体管。现在,他们又克服了尺寸缩小的工艺限制,成功开发出5纳米栅长碳纳米晶体管,其性能接近了由量子力学原理决定的理论极限。

德国慕尼黑工业大学(Technical University of
Munich;TUM)的研究人员合成了一种高度弹性的无机半导体材料——SnIP,最特别的是它具有像DNA的双螺旋结构。

事实显然不是这样,现今CPU综合性能上不去有复杂度太大的原因,有主频难以继续提高的原因,也有芯片功耗障碍的原因和带宽障碍的原因。这些原因都不是因为硅半导体本身的材料问题造成的。

石墨烯场效应晶体管的研究现状和进展

这种新型的半导体主要由锡(Sn)、碘(I)和(P)三种元素构成,能够展现出非凡的光学与电子特性,并具备极端的机械柔韧度,其纤维约有几公分长,但可任意弯曲而不至于断裂。截至目前为止,最细的SnIP纤维仅包含5种双螺旋链,而且厚度只有几奈米。

以主频的提高为例,130nm工艺之后,芯片电路延迟随晶体管缩小的趋势越来越弱。伴随而来的就是主频的提升越来越难,目前制约主频的主要因素已经成为连线时延而非晶体管的翻转速度。

石墨烯是一种二维碳结构材料,因为其具有零禁带特性,即使在室温下载流子在石墨烯中的平均自由程和相干长度也可为微米级,所以是一种性能优异的导电材料。石墨烯场效应器件最重要的挑战之一是如何增加带隙,而又不降低它非常高的迁移率。

九、首块纳米晶体“墨水”制成的晶体管问世

图片 15

图片 16

图片 17

(随之制程的减小,门延迟降低而连线延迟上升)

石墨烯晶体管与传统的硅半导体晶体管相比,有以下特点:

晶体管是电子设备的基本元件,但其构造过程非常复杂,需要高温且高度真空的条件。美韩科学家在《科学》杂志上报告了一种新型制造方法,将液体纳米晶体“墨水”按顺序放置。他们称,这种效应晶体管或可用3D打印技术制造出来,有望用于物联网、柔性电子和可穿戴设备的研制。

可见此时引入新的材料并不能解决电子工业面临的问题,何况以石墨烯构建芯片还面临着与旧生态不兼容、加工困难的问题。事实上,半导体电子管诞生初期就有过是不是应该用功耗更低的锗来做半导体的基材的讨论。最后因为成本以及硅电路过去的积累最终使产业界放弃了这一打算。

(1)在电场的调控下,石墨烯中的载流子类型能够在电子和空穴间连续变化,具有双极型导电性。因此GFET无法像传统半导体晶体管那样被有效地关闭,不适于作逻镇器件。但采取一些新型的结构也能得到基于石墨締的高开关电流此的器件;

十、美国科学家设计超材料以光子形式释放能量传递信息

今天引入的新材料,如果不能解决上面这些关键问题,面对的壁垒比当年的锗半导体材料只大不小,所以Max最近的研究开始向石墨烯辅助硅转变。

(2)石墨烯的载流子迁移率很高,而且可W被电场调控,在高频领域,尤其在射频(RF)领域中有很大的应用潜力。

图片 18

Max教授在他近期的论文中宣称:”该芯片的RRAM和碳纳米晶体管在200度下制造,而传统的工艺需要1000度”。低温有助于大大增加集成电路层之间的纵向联系,按该论文的说法,石墨烯3D芯片的纵向联系比传统方式增加了1000倍。而这种联系有助于解决大型集成电路元件中带宽障碍的问题。

(3)石墨稀本身为二维材料,有利于缩小电路尺寸和电路的集成。CVD制备的石墨烯可被转移到任意衬底上,有利于制备石墨烯与其他材料的异质结,研究新的物理现象和新的电子器件。

美国劳伦斯伯克利国家实验室和加州大学伯克利分校的科学家在《物理评论快报》杂志撰文指出,他们设计出了一种拥有自然界中没有的新奇属性的“量子超材料”,
它由光组成的人造晶体及被捕获的超冷原子构成,在很多方面与晶体类似,但结构更“完美”,没有天然材料内常见的瑕疵。

这种温度上的差异是由石墨烯材料与硅半导体加工方式不同造成的,构建芯片的晶体管并非是蚀刻加工的,而是”生长”出来的。石墨烯3D芯片制造靠的是化学而非物理作用。

石墨烯优于碳纳米管的是,在制造碳纳米管的工艺中,会生成金属和半导体材料的碳纳米管混合物,在制作复杂电路时,碳纳米管必须经过仔细筛选和定位,目前还没有开发出非常好的方法,而这对石墨烯而言则要容易得多。这种独特的电性能使石墨烯作为一种替代材料在许多新的领域得到应用。

图片 19

高电子/空穴迁移率和对称的能带结构使得石墨烯非常适合制作高频晶体管,虽然石墨烯导电能力极佳,但它缺乏能隙,即石墨烯中没有“电子态无法存在的禁带”的能量范围,限制了它作为开关器件方面的应用,而石墨烯纳米带(GNR)可以打开石墨烯的能隙,因此,类半导体的GNR引起了人们的极大关注,激发科学家研制全石墨烯电路的广泛兴趣。

这种方式在一定程度上有其优越的一面,另一方面,如何大规模的、均匀的、同样大小的生长碳纳米晶体管也是令人头疼的问题。

据报导,曼切斯特大学AndreGeim小组,除了已开发出了10nm级可实际运行的石墨烯晶体管外,他们尚未公布的最新研究成果还有,已研制出长宽均为1个分子的更小的石墨烯晶体管,该石墨烯晶体管实际上是由单原子组成的晶体管。

2013年全球首台碳纳米晶体管计算机诞生时Max
Shulaker教授说:”这是人类利用碳纳米管生产的最复杂的电子设备。”而这台计算机仅仅只有178个晶体管,同时只能运行支持计数和排列等简单功能的操作系统。这与当时的硅半导体计算机存在数千万倍的差距。

2008年IBM公司的Watson研究中心在世界上率先制成低噪声石墨烯晶体管。普通的纳米器件随着尺寸的减小,被称做1/f的噪音会越来越明显,使器件信噪比恶化,这种现象就是“豪格规则(Hooge’sLaw)”。石墨烯、碳纳米

Max教授在另一篇论文中也承认”碳纳米管(加工中)容易改变,这会降低电路产量,
降低电路的抗干扰能力,
并严重降低其能源和速度效益。为了克服这一突出的挑战,
需要探索和优化碳纳米管处理方案和 CNFET 电路设计。”

管以及硅材料都会产生该现象,因此,如何减小1/f噪声成为实现纳米元件的关键问题之一。IBM通过重叠2层石墨烯,试制成功了晶体管。由于2层石墨烯之间生成了强电子结合,从而控制了1/f噪音。IBM公司的Ming-YuLin的该发现证明,2层石墨烯有望应用于各种各样的领域。

图片 20

2008年5月美国乔治亚科技学院德希尔与麻省理工学院林肯实验室合作在单一芯片上生成的几百个石墨烯晶体管阵列。

说取代传统硅芯片为时尚早

硅基的微计算机处理器在室温条件下每秒钟只能执行一定数量的操作,然而电子穿过石墨烯几乎没有任何阻力,所产生的热量也非常少。此外,石墨烯本身就是一个良好的导热体,可以很快地散发热量。由于具有优异的性能,由石墨烯制造的电子产品运行的速度要快得多。

2017年这次Max教授的研究成果之所以受人瞩目,一方面是因为芯片中集成的碳纳米晶体管数极大地增加到200多万个,另一方面是因为”电子复兴计划”宣称该团队的成果有望以更低的成本实现50倍的性能提升。

石墨烯器件制成的计算机的运行速度可达到太赫兹,即1×106kHz的1000倍,如果能进一步开发,其意义不言而喻。

笔者认为,现在说石墨烯3D芯片取代传统硅芯片还有许多困难,该团队的宣传无疑存在相当的水分。

除了让计算机运行得更快,石墨烯器件还能用于需要高速工作的通信技术和成像技术。有关专家认为,石墨烯很可能首先应用于高频领域,如太赫兹波成像,用途之一是用来探测隐藏的武器。速度还不是石墨烯的唯一优点,硅不能分割成小于10nm的小片,否则其将失去诱人的电子性能。与硅相比,石墨烯分割成1nm小片时,其基本物理性能并不改变,而且其电子性能还有可能异常发挥。

图片 21

结论:硅材料鹿死谁手还未可知

之所以这样说是因为该团队并未解决生产石墨烯芯片带来的良品率问题。所谓200万个碳纳米晶体管由计算、输入输出和采集系统组成,并构成了100万个气味传感器。也就是说,这些晶体管几乎全部用于制作气味传感器了,而气味传感器的容错性是非常强的。100万个传感器中即使损坏几万个也不会对芯片产生毁灭性的影响。

1)硅电子材料的发展已接近顶峰,碳纳米管和石墨烯有比硅材料器件更小的尺寸和更优良的电学性质,很有可能在未来取代硅材料。

这样的芯片能否证明碳纳米晶体管生产的稳定性和可靠性是值得怀疑的。

2)碳纳米管性质优良而且发现较早,人们对其制取及构建器件的方法的研究比较深入,并取得了一些成果,足以证明碳纳米管有构建实用微电子器件的条件,但传统的构建器件的方法存在一些问题,而且对不同碳纳米管的分离是最大的挑战,实现碳纳米管集成电路仍需一定时间的探索。

而该团队确实在宣传上也非常喜欢浮夸的风格,在论文中动辄宣称比现有的方法提升若干倍。在一篇讨论碳纳米晶体管设计中的文章中甚至宣称比现有的方案有了至少100倍的提升。因此所谓50倍的性能提高也是非常值得怀疑的。返回搜狐,查看更多

3)石墨烯与碳纳米管一样具有优良的性质,而且构建器件时不必经历复杂的分离过程,比碳纳米管实用性更强,在制备上也取得了一定的突破,但其发现较晚,在器件制备上还有待探索。在未来,二者可能共同成为构成集成电路的主导材料。

责任编辑: