化学所通过成员能级的精准调整实现有机光伏功效新突破,非富勒烯聚合物太阳电瓶给体光伏材质侧链工程研讨获进展

聚合物太阳能电池作为新兴的前沿研究领域,其能量转化效率的不断攀升主要得益于光活性层材料(包括电子给体与电子受体材料)的设计和开发。其中,通过分子结构的理性设计来调制材料的前线轨道能级是一种十分有效的提高器件开路电压的策略。近年,在中国科学院、国家自然科学基金委、北京市科委和中国科学院化学研究所的大力支持下,化学所高分子物理与化学国家重点实验室侯剑辉课题组研究人员对聚合物给体材料的能级调制进行了深入的研究。他们表示,通过降低给体材料的HOMO能级,可以实现相应光伏器件开路电压的提升,并最终获得更高的能量转化效率(Chem.
Rev.
2016, 116, 7397-7457; Polym. Int. 2015, 64, 957-962)。

聚合物太阳能电池作为新兴的前沿研究领域,其能量转化效率的不断攀升主要得益于光活性层材料(包括电子给体与电子受体材料)的设计和开发。其中,通过分子结构的理性设计来调制材料的前线轨道能级是一种十分有效的提高器件开路电压的策略。近年,在中国科学院、国家自然科学基金委、北京市科委和化学所的大力支持下,化学所高分子物理与化学国家重点实验室的研究人员对聚合物给体材料的能级调制进行了深入的研究。他们表示,通过降低给体材料的HOMO能级,可以实现相应光伏器件开路电压的提升,并最终获得更高的能量转化效率(Chem.
Rev.
2016, 116, 7397-7457; Polym. Int. 2015, 64,
957-962)。

聚合物太阳能电池具有结构和制备过程简单、成本低、重量轻、可制备成柔性器件等突出优点,成为近年来国内外研究热点。将富勒烯衍生物受体用n-型有机半导体材料取代,可以克服富勒烯受体存在的可见光区吸光弱、能级调控困难和形貌稳定性差等缺点,近年来受到研究者的关注。多种性能优异的非富勒烯型受体被设计出来,如窄带隙n-型聚合物受体N2200和有机半导体受体ITIC。

相对于给体材料,对传统的富勒烯型受体进行化学修饰更为困难。但令人振奋的是,此前研究人员在非富勒烯型聚合物太阳能电池中实现了超过11%的能量转换效率(Sci.
China Chem.
2016, DOI:
10.1007/s11426-016-0198-0),这个结果已经十分接近传统的富勒烯型太阳能电池的最高效率。此外,相对于富勒烯型器件,非富勒烯型器件具有更加优异的稳定性,因此进一步发展此类光伏器件势在必行。

相对于给体材料,对传统的富勒烯型受体进行化学修饰更为困难。但令人振奋的是,此前研究人员在非富勒烯型聚合物太阳能电池中实现了超过11%的能量转换效率(Sci.
China Chem.
2016, DOI:
10.1007/s11426-016-0198-0),这个结果已经十分接近传统的富勒烯型太阳能电池的最高效率。此外,相对于富勒烯型器件,非富勒烯型器件具有更加优异的稳定性,因此进一步发展此类光伏器件势在必行。

中国科学院化学研究所有机固体院重点实验室李永舫课题组研究人员发展了一系列基于噻吩取代苯并二噻吩与苯并三氮唑单元的中间带隙二维共轭聚合物给体材料,通过侧链工程降低了HOMO能级,增强了链间相互作用,提高了空穴迁移率。使基于这类聚合物为给体、ITIC为受体的非富勒烯聚合物太阳能电池的能量转换效率达到11.4%。

得益于近年来对给体材料能级调控的成功实施,研究人员对于非富勒烯受体材料能级的精准调控展开研究。近期,他们首次通过在小分子受体的两端引入弱给电子基团实现了对于受体材料LUMO能级的精准调控(Adv.
Mater.
2016, DOI:
10.1002/adma.201602776)。研究表明:通过在特定位点进行给电子基团的修饰可以在保证材料HOMO能级基本不变的情况下,LUMO能级实现十分有效的提升;而随着给电子性取代基引入数量的增加,材料的LUMO能级实现阶梯式的提高。因此,相应器件的开路电压从原先的0.90
V分别提升至0.94 V和0.97
V。更值得指出的是,由于取代基团较小的空间位阻,材料的堆积特性几乎未发生改变,理想的共混薄膜形貌得以保持。因此,以给体材料PBDB-T和受体材料IT-M构筑的非富勒烯型太阳能电池器件实现了效率的进一步突破,并取得了创纪录的12.05%的能量转换效率。该电池的效率通过了中国计量科学研究院的认证,并达到11.6%,这是目前公开认证最高效率的单结有机太阳电池。同时,该工作也展现出受体材料精准能级调制的重要性,这将极大地促进受体光伏材料的发展。

得益于近年来对给体材料能级调控的成功实施,研究人员对于非富勒烯受体材料能级的精准调控展开研究。近期,他们首次通过在小分子受体的两端引入弱给电子基团实现了对于受体材料LUMO能级的精准调控(Adv.
Mater.
2016, DOI:
10.1002/adma.201602776)。研究表明:通过在特定位点进行给电子基团的修饰可以在保证材料HOMO能级基本不变的情况下,LUMO能级实现十分有效的提升;而随着给电子性取代基引入数量的增加,材料的LUMO能级实现阶梯式的提高。因此,相应器件的开路电压从原先的0.90
V分别提升至0.94 V和0.97
V。更值得指出的是,由于取代基团较小的空间位阻,材料的堆积特性几乎未发生改变,理想的共混薄膜形貌得以保持。因此,以给体材料PBDB-T和受体材料IT-M构筑的非富勒烯型太阳能电池器件实现了效率的进一步突破,并取得了创记录的12.05%的能量转换效率。该电池的效率经过了中国计量科学研究院的认证,并达到11.6%,这是目前公开认证最高效率的单结有机太阳电池。同时,该工作也展现出受体材料精准能级调制的重要性,这将极大地促进受体光伏材料的发展。

研究人员在前期工作中发现,BTA单元上的两个氢原子被氟原子取代,聚合物的HOMO能级下移0.13
eV,同时空穴迁移率显著提高(Chem.
Mater
. 2012,24,
3247-3254)。利用这类聚合物在可见-近红外区与ITIC受体吸收互补的特点,制备了以这类聚合物为给体、ITIC为受体的非富勒烯聚合物太阳能电池。得益于氟取代聚合物J51较低的HOMO能级和较高的空穴迁移率,与无氟取代的聚合物J50相比,基于J51器件的开路电压(Voc)从0.71
V提高到0.82 V,能量转换效率从4.80%提高到9.26% (Adv. Mater.2016, 28,
8288-8295)。考虑到0.82
V的Voc仍然不够高,研究人员根据先前的经验(Energy Environ. Sci.2014,
7,
2276-2284),将硫烷基引入到BDTT单元的噻吩共轭侧链上进一步降低了聚合物的HOMO能级,同时还使其吸收光谱红移。另外还发现所得聚合物J61更有利于采取平行于衬底方向的分子排列,这些因素都有利于提升光伏性能。基于J61与ITIC的器件Voc和PCE分别提高到约0.9
V和9.52% (J. Am. Chem. Soc.2016, 138,
4657-4664),通过器件进一步优化使效率达到了10.57 % (J. Am. Chem. Soc.2016, 138, 15011-15018)。

图片 1

图片 2

硅烷基侧链在共轭聚合物光伏材料的构筑上很少受关注。尽管在有机官能团的构筑中,三甲基硅烷通常作为一种保护基团使用,但很少有人关注硅烷基链的电子效应。有机固体实验室的研究人员首次在BDTT和氟取代BTA共聚物的噻吩共轭侧链上引入硅烷基来调制聚合物的电子结构和光伏性能。研究发现,得益于硅原子σ*与芳香体系上π轨道的相互作用,所得聚合物J71具有更低的HOMO能级。另外,较长的C-Si键也让硅原子上的三取代烷基链距离主链更远,增加了分子的有序堆积和聚合物的结晶性。采用J71与ITIC共混制备的非富勒烯聚合物太阳能电池Voc进一步提升至0.94
V,器件效率达到11.41%。这一体系在给受体HOMO能级差只有0.11
eV的情况下仍然获得了高效的受体激子电荷分离,从而获得了兼具高的开路电压和高的短路电流的光伏器件,这对于重新认识聚合物太阳能电池中的激子电荷分离的驱动力具有重要意义,也为将来的高效共轭聚合物给体光伏材料的分子设计提供了一种新思路和新途径,将对有机光伏领域的发展起到促进作用。该工作已在《自然-通讯》发表
(Nat. Commun. 2016, 7,13651)。

小分子受体和聚合物给体的分子结构以及相应的分子能级和光伏性能参数

图1 小分子受体和聚合物给体的分子结构以及相应的分子能级和光伏性能参数

图片 3

高分子物理与化学实验室

图:非富勒烯聚合物太阳能电池给体光伏材料的侧链工程及其HOMO能级和器件性能

2016年11月1日